Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 516-522, jul. 2024. graf, ilus
Article in English | LILACS | ID: biblio-1538029

ABSTRACT

This article aimed to discuss the protection of trans - nerolidol on vascular endothelial cells (ECs) injured by lipopolysac charides. ECs were divided into four groups: normal, model, low and high dose trans - nerolidol treatment groups. The cell survival rate and the contents of NO in the cell culture supernatant were determined. The protein expression and transcript level of pe roxisome proliferator - activated receptor - γ (PPARγ), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were determined by western blotting and RT - PCR respectively. Compared with the normal group, cell livability, protein e xpression and mRNA transcript level of PPARγ and eNOS decreased, NO contents, protein expression and mRNA transcript tlevel of iNOS increased in model group significantly. Compared with model group, all the changes recovered in different degree in treatmen t groups. Hence, it was concluded that trans - nerolidol can alleviate the ECs injuryby the regulation of iNOS/eNOS through activating PPARγ in a dose - dependent manner


Este artículo tiene como objetivo discutir la protección del trans - nerolidol en las células endoteliales vasculares (CE) dañadas por lipopolisacáridos. Las CE se di vidieron en cuatro grupos: normal, modelo, grupos de tratamiento con trans - nerolidol de baja y alta dosis. Se determinó la tasa de supervivencia de las células y los contenidos de óxido nítrico (NO) en el sobrenadante del cultivo celular. La expresión de p roteínas y el nivel de transcripción del receptor activado por proliferadores de peroxisomas - γ (PPARγ), el óxido nítrico sint et asa endotelial (eNOS) y el óxido nítrico sint et asa inducible (iNOS) se determinaron mediante western blot y RT - PCR, respectivamen te. En comparación con el grupo normal, la viabilidad celular, la expresión de proteínas y el nivel de transcripción de PPARγ y eNOS disminuyeron, los contenidos de NO, la expresión de proteínas y el nivel de transcripción de iNOS aumentaron significativam ente en el grupo modelo. En comparación con el grupo modelo, todos los cambios se recuperaron en diferentes grados en los grupos de tratamiento. Por lo tanto, se concluyó que el trans - nerolidol puede aliviar el daño en las CE regulando iNOS/eNOS a través d e la activación de PPARγ de manera dependiente de la dosis.


Subject(s)
Sesquiterpenes/pharmacology , Lipopolysaccharides/pharmacology , Endothelial Cells/drug effects
2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 60-68, 2023.
Article in Chinese | WPRIM | ID: wpr-953924

ABSTRACT

ObjectiveTo explore the protective effect and mechanism of Qihong Tongluo prescription on vascular endothelial cells in rats with deep venous thrombosis (DVT). MethodSixty-six SD rats were randomly divided into a blank group (n=11) and a modeling group (n=55). The DVT model was induced in rats of the modeling group by slowing down blood flow and damaging vascular endothelium. The model rats were randomly divided into model group, aspirin group (200 mg·kg-1), and low-,medium-, and high-dose Qihong Tongluo prescription groups (6.5, 13, 26 g·kg-1) according to a random number table. Rats were treated with corresponding drugs by gavage, while those in the model group and the blank group received normal saline, once per day for 7 days. The rats were sacrificed and the abdominal aortic blood was taken. The levels of serum endothelin-1 (ET-1) and interleukin-6 (IL-6) were detected by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was used to observe the pathological changes in vascular endothelial tissues. The ultrastructure of vascular endothelial cells was observed by the transmission electron microscope. The viability of vascular endothelial cells was detected by methylthiazolyldiphenyl-tetrazolium bromide (MTT) method,and the release level of lactate dehydrogenase (LDH) was detected by the LDH kit. The messenger ribonucleic acid (mRNA) expression of platelet-activating factor (PAF),nuclear transcription factor κB (NF-κB),Ras-related C3 botulinum toxin substrate 1 (Rac1), and Ras-related C3 botulinum toxin substrate 2 (Rac2) in vascular endothelial tissues were detected by real-time reverse transcription polymerase chain reaction (Real-time PCR). The protein expression of PAF,NF-κB,Rac1, and Rac2 in vascular endothelial tissues was detected by Western blot. ResultThe model group showed seriously damaged and swollen vascular endothelial cells with massive shedding, attachment of massive inflammatory cells, nucleus pyknosis and deformation under the electron microscope, highly swollen mitochondria, serious cytoplasmic vacuolation,and exposure of internal elastic membrane. The damage of vascular endothelium and its ultrastructure in Qihong Tongluo prescription groups and the aspirin group was improved in varying degrees. Compared with the blank group,the model group showed increased levels of serum ET-1 and IL-6,potentiated vascular endothelial cell viability, up-regulated mRNA and protein expression of PAF,NF-κB,Rac1, and Rac2 in vascular endothelial tissues,and decreased LDH release level of vascular endothelial cells (P<0.05). Compared with the model group,the aspirin group and the Qihong Tongluo prescription groups showed decreased levels of serum ET-1 and IL-6,blunted vascular endothelial cell viability,down-regulated mRNA and protein expression of PAF,NF-κB,Rac1, and Rac2 in vascular endothelial tissues,and increased LDH release level of vascular endothelial cells (P<0.05). The effect of Qihong Tongluo prescription was dose-dependent. ConclusionQihong Tongluo prescription has a protective effect on vascular endothelial cells of DVT rats and can prevent and treat thrombosis,and its therapeutic effect is presumably achieved by inhibiting the expression of PAF,NF-κB,Rac1,and Rac2 and reducing the levels of serum ET-1 and IL-6.

3.
Chinese Journal of Experimental Ophthalmology ; (12): 846-853, 2023.
Article in Chinese | WPRIM | ID: wpr-990922

ABSTRACT

Objective:To investigate the effect of polypeptide N-acetylgalactosaminaminyltransferase 2 (GALNT2) on the proliferation and apoptosis of human retinal vascular endothelial cells (HRCECs) cultured in high glucose and its possible mechanism.Methods:The small hairpin RNA (shRNA) targeting GALNT2 gene was constructed to interfere with the lentiviral vector and infect HRCECs.HRCECs were divided into blank control group, model group, NC-shGALNT2 group and shGALNT2 group, which were cultured in medium containing 5.5 mmol/L glucose, 25 mmol/L glucose, shGALNT2 negative control virus 25 mmol/L glucose and shGALNT2 knockdown virus 25 mmol/L glucose for 24 hours, respectively.The relative expression of GALNT2 mRNA in the four groups was detected by real-time fluorescence quantitative PCR.The relative expression levels of GALNT2, epidermal growth factor (EGF), EGF receptor (EGFR) and phosphorylated EGFR (p-EGFR) were detected by Western blot.The proliferative values of HRCECs were detected by cell counting kit-8 method.The apoptosis rate of different groups was detected by flow cytometry. Results:The relative expression levels of GALNT2 mRNA and protein were significantly higher in model group than in blank control group, and were significantly lower in shGALNT2 group than in blank control group (all at P<0.05). The cell proliferation value was significantly lower in model group than in blank control group, and was significantly higher in shGALNT2 than in model group and NC-shGALNT2 group (all at P<0.05). The apoptosis rates of blank control group, model group, NC-shGALNT2 group and shGALNT2 group were (4.73±0.26)%, (8.66±0.25)%, (9.26±1.12)% and (5.47±0.18)%, respectively, with a significant overall difference ( F=342.921, P<0.001). The apoptosis rate was significantly higher in model group than in blank control group, and was significantly lower in shGALNT2 group than in model group and NC-shGALNT2 group (all at P<0.05). The relative expression level of EGFR protein was significantly higher and the relative expression level of p-EGFR protein was significantly lower in model group than in blank control group (all at P<0.05). The relative expression of p-EGFR protein was significantly higher in shGALNT2 group than in model group (all at P<0.05). Conclusions:Knocking down GALNT2 can improve the proliferative ability of HRCECs under high glucose culture and reduce apoptosis, which may be related to the activation of EGFR signaling pathway.

4.
Journal of Southern Medical University ; (12): 807-814, 2023.
Article in Chinese | WPRIM | ID: wpr-986992

ABSTRACT

OBJECTIVE@#To investigate the regulatory role of the long non-coding RNA LINC00926 in pyroptosis of hypoxia-induced human umbilical vein vascular endothelial cells (HUVECs) and explore the molecular mechanism.@*METHODS@#HUVECs were transfected with a LINC00926-overexpressing plasmid (OE-LINC00926), a siRNA targeting ELAVL1, or both, followed by exposure to hypoxia (5% O2) or normoxia. The expression of LINC00926 and ELAVL1 in hypoxia-treated HUVECs was detected using real-time quantitative PCR (RT-qPCR) and Western blotting. Cell proliferation was detected using Cell Counting Kit-8 (CCK-8), and the levels of IL-1β in the cell cultures was determined with ELISA. The protein expression levels of pyroptosis-related proteins (caspase-1, cleaved caspase-1 and NLRP3) in the treated cells were analyzed using Western blotting, and the binding between LINC00926 and ELAVL1 was verified with RNA immunoprecipitation (RIP) assay.@*RESULTS@#Exposure to hypoxia obviously up-regulated the mRNA expression of LINC00926 and the protein expression of ELAVL1 in HUVECs, but did not affect the mRNA expression of ELAVL1. LINC00926 overexpression in the cells significantly inhibited cell proliferation, increased IL-1β level and enhanced the expressions of pyroptosis-related proteins (all P < 0.05). LINC00926 overexpression further up-regulated the protein expression of ELAVL1 in hypoxia-exposed HUVECs. The results of RIP assay confirmed the binding between LINC00926 and ELAVL1. ELAVL1 knockdown significantly decreased IL-1β level and the expressions of pyroptosis-related proteins in hypoxia-exposed HUVECs (P < 0.05), while LINC00926 overexpression partially reversed the effects of ELAVL1 knockdown.@*CONCLUSION@#LINC00926 promotes pyroptosis of hypoxia-induced HUVECs by recruiting ELAVL1.


Subject(s)
Humans , Caspase 1 , ELAV-Like Protein 1 , Human Umbilical Vein Endothelial Cells , Pyroptosis , RNA, Messenger , RNA, Long Noncoding/genetics , Cell Hypoxia
5.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 197-201, 2023.
Article in Chinese | WPRIM | ID: wpr-960891

ABSTRACT

Objective@# To investigate the clinical manifestations, pathological features, and treatment of oral and maxillofacial pyogenic granulomas induced by camrelizumab. @*Methods@# A case of pyogenic granuloma of the gums and lips caused by camrelizumab was reported along with a literature review. @*Results@# After 4 months of treatment with camrelizumab for liver cancer, the patient developed systemic reactive capillary hyperplasia (RCH), followed by multiple masses on the lower lip and gingiva. After periodontal therapy, the masses on the lower lip and the gingiva were removed, and camrelizumab administration was stopped. The pathological result was gingival pyogenic granuloma/granulomatous hemangioma. No new masses were found in the oral cavity during postoperative follow-up. A review of the literature showed that RCH is the most common adverse drug reaction to camrelizumab but it occurs infrequently in the oral cavity. At present, the etiology of RCH has not been clarified, but the research has shown that camrelizumab may trigger tissue proliferation into hemangiomas by activating vascular endothelial cells, and the combined use of camrelizumab is safer than single use. RCH is self-limiting and most cases resolve spontaneously after discontinuation of the drug. If the mass causes dysfunction, surgical excision is feasible.@*Conclusion @#Camrelizumab can cause oral and maxillofacial reactive capillary hyperplasia complicated by pyogenic granuloma.

6.
China Journal of Chinese Materia Medica ; (24): 3623-3632, 2023.
Article in Chinese | WPRIM | ID: wpr-981493

ABSTRACT

In the present study, the contents of seven active components [genipinic acid(GA), protocatechuic acid(PCA), neochlorogenic acid(NCA), chlorogenic acid(CA), cryptochlorogenic acid(CCA),(+)-pinoresinol di-O-β-D-glucopyranosid(PDG), and(+)-pinoresinol 4'-O-β-D-glucopyranoside(PG)] of Eucommiae Cortex in aortic vascular endothelial cells of spontaneously hypertensive rats(SHR) were simultaneously determined by ultra-high liquid chromatography-triple quadrupole mass spectrometry(UPLC-MS/MS). The qualified SHR models were selected. The primary aortic endothelial cells(VECs) of rats were separated and cultured by ligation and adherence, followed by subculture. After successful identification, an UPLC-MS/MS method for simultaneously determining the contents of GA, PCA, NCA, CA, CCA, PDG, PG in seven components of Eucommiae Cortex in VECs was established, including specificity, linearity, matrix effect, recovery, accuracy, precision and stability. The established method had the lo-west limit of quantification of 0.97-4.95 μg·L~(-1), accuracy of 87.26%-109.6%, extraction recovery of 89.23%-105.3%, matrix effect of 85.86%-106.2%, and stability of 86.00%-112.5%. Therefore, the established accurate UPLC-MS/MS method could rapidly and simultaneously determine the contents of the seven active components of Eucommiae Cortex in VECs of SHRs, which provided a refe-rence for the study of cellular pharmacokinetics of active components of Eucommiae Cortex extract.


Subject(s)
Rats , Animals , Rats, Inbred SHR , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Endothelial Cells , Tandem Mass Spectrometry/methods
7.
China Journal of Chinese Materia Medica ; (24): 1446-1454, 2023.
Article in Chinese | WPRIM | ID: wpr-970616

ABSTRACT

Tetramethylpyrazine is the main component of Ligusticum chuanxiong. Studies have found that tetramethylpyrazine has a good protective effect against cardiovascular diseases. In the heart, tetramethylpyrazine can reduce myocardial ischemia/reperfusion injury by inhibiting oxidative stress, regulating autophagy, and inhibiting cardiomyocyte apoptosis. Tetramethylpyrazine can also reduce the damage of cardiomyocytes caused by inflammation, relieve the fibrosis and hypertrophy of cardiomyocytes in infarcted myocardium, and inhibit the expansion of the cardiac cavity after myocardial infarction. In addition, tetramethylpyrazine also has a protective effect on the improvement of familial dilated cardiomyopathy. Besides, the mechanisms of tetramethylpyrazine on blood vessels are more abundant. It can inhibit endothelial cell apoptosis by reducing oxidative stress, maintain vascular endothelial function and homeostasis by inhibiting inflammation and glycocalyx degradation, and protect vascular endothelial cells by reducing iron overload. Tetramethylpyrazine also has a certain inhibitory effect on thrombosis. It can play an anti-thrombotic effect by reducing inflammatory factors and adhesion molecules, inhibiting platelet aggregation, and suppressing the expression of fibrinogen and von Willebrand factor. In addition, tetramethylpyrazine can also reduce the level of blood lipid in apolipoprotein E-deficient mice, inhibit the subcutaneous deposition of lipids, inhibit the transformation of macrophages into foam cells, and inhibit the proliferation and migration of vascular smooth muscle cells, thereby reducing the formation of atherosclerotic plaque. In combination with network pharmacology, the protective mechanism of tetramethylpyrazine on the cardiovascular system may be mainly achieved through the regulation of phosphatidylinositol 3 kinase/protein kinase B(PI3K/Akt), hypoxia-inducible factor 1(HIF-1), and mitogen-activated protein kinase(MAPK) pathways. Tetramethylpyrazine hydrochloride and sodium chloride injection has been approved for clinical application, but some adverse reactions have been found in clinical application, which need to be paid attention to.


Subject(s)
Mice , Animals , Endothelial Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Myocardial Infarction , Myocardium/metabolism , Myocytes, Cardiac , Thrombosis , Inflammation , Apoptosis
8.
Chinese Journal of Ocular Fundus Diseases ; (6): 408-414, 2023.
Article in Chinese | WPRIM | ID: wpr-995644

ABSTRACT

Objective:To observe the effect of metformin (Met) on inflammatory bodies and focal death in human retinal microvascular endothelial cells (hRMEC) in diabetes mellitus (DM) microenvironment.Methods:Experimental research was divided into in vivo animal experiment and in vitro cell experiment. In vivo animal experiments: 9 healthy C57BL/6J male mice were randomly divided into DM group, normal control group, and DM+Met group, with 3 mice in each group. DM group and DM+Met group mice were induced by streptozotocin to establish DM model, and DM+Met group was given Met 400 mg/ (kg · d) intervention. Eight weeks after modeling, the expression of NLRP3, cleaved-membrane perforating protein D (GSDMD) and cleaved-Caspase-1 in the retina of mice in the normal control group, DM group and DM+Met group were observed by immunohistochemical staining. In vitro cell experiments: hRMEC was divided into conventional culture cell group (N group), advanced glycation end products (AGE) group, and AGE+Met group. Joining the AGE, AGE+Met groups cells were induced by 150 μg/ml of glycation end products, and 2.0 mmol/L Met was added to the AGE+Met group. Pyroptosis was detected by flow cytometry; 2' ,7'-dichlorofluorescein diacetate (DCFH-DA) fluorescent probe was used to detect the expression of reactive oxygen species (ROS) in cells of each group. Real-time fluorescence quantitative polymerase chain reaction and Western blot were used to detect the relative mRNA and protein expression levels of NLRP3, cleaved-GSDMD, cleaved-Caspase-1 in each group of cells. Single factor analysis of variance was used for comparison among the three groups.Results:In vivo animal experiments: compared with the DM group, the expression of NLRP3, cleaved-GSDMD, and cleaved-Caspase-1 in the retina of normal control group and DM+Met group mice was significantly reduced, with significant difference among the 3 groups ( F=43.478, 36.643, 24.464; P<0.01). In vitro cell experiment and flow cytometry showed that the pyroptosis rate of AGE group was significantly higher than that of N group and AGE+Met group ( F=32.598, P<0.01). The DCFH-DA detection results showed that the intracellular ROS levels in the N group and AGE+Met group were significantly lower than those in the AGE group, with the significant difference ( F=47.267, P<0.01). The mRNA ( F=51.563, 32.192, 44.473; P<0.01) and protein levels ( F=63.372, 54.463, 48.412; P<0.01) of NLRP3, cleaved-GSDMD, and cleaved-Caspase-1 in hRMEC of the AGE+Met group were significantly reduced compared to the N group. Conclusion:Met can down regulate the expression of NLRP3 inflammatory body related factors in hRMEC and inhibit pyroptosis.

9.
Chinese Journal of Ocular Fundus Diseases ; (6): 401-407, 2023.
Article in Chinese | WPRIM | ID: wpr-995643

ABSTRACT

Objective:To observe the effects of p21 activated kinase 4 (PAK4) on the mitochondrial function and biological behavior in retinal vascular endothelial cells.Methods:The experimental study was divided into two parts: in vivo animal experiment and in vitro cell experiment. In vivo animal experiments: 12 healthy C57BL/6J male mice were randomly divided into normal control group and diabetes group, with 6 mice in each group. Diabetes mice were induced by streptozotocin to establish diabetes model. Eight weeks after modeling, quantitative real-time polymerase chain reaction and Western blots were performed to detect the expression of PAK4 in diabetic retinas. In vitro cell experiments: the human retinal microvascular endothelial cells (hRMEC) were divided into three groups: conventional cultured cells group (N group), empty vector transfected (Vector group); pcDNA-PAK4 eukaryotic expression plasmid transfected group (PAK4 group). WB and qPCR were used to detect transfection efficiency, while scratching assay, cell scratch test was used to detect cell migration in hRMEC of each group. In vitro white blood cell adhesion experiment combined with 4 ', 6-diamino-2-phenylindole staining was used to detect the number of white blood cells adhering to hRMEC in each group. The Seahorse XFe96 cell energy metabolism analyzer measures intracellular mitochondrial basal respiration, adenosine triphosphate (ATP) production, maximum respiration, and reserve respiration capacity. The t-test was used for comparison between the two groups. Single factor analysis of variance was used for comparison among the three groups. Results:In vivo animal experiments: compared with normal control group, the relative expression levels of PAK4 mRNA and protein in retina of diabetic mice were significantly increased, with statistical significance ( t=25.372, 22.419, 25.372; P<0.05). In vitro cell experiment: compared with the N group and Vector group, the PAK4 protein, mRNA relative expression and cell mobility in the hRMEC of PAK4 group were significantly increased, with statistical significance ( F=36.821, 38.692, 29.421; P<0.05). Flow cytometry showed that the adhesion number of leukocytes on hRMEC in PAK4 group was significantly increased, and the difference was statistically significant ( F=39.649, P<0.01). Mitochondrial pressure measurement results showed that the capacity of mitochondrial basic respiration, ATP production, maximum respiration and reserve respiration in hRMEC in PAK4 group was significantly decreased, with statistical significance ( F=27.472, 22.315, 31.147, 27.472; P<0.05). Conclusion:Over-expression of PAK4 impairs mitochondrial function and significantly promotes leukocyte adhesion and migration in retinal vascular endothelial cells.

10.
Chinese Journal of Ocular Fundus Diseases ; (6): 324-329, 2023.
Article in Chinese | WPRIM | ID: wpr-995632

ABSTRACT

Objective:To observe the effect of high expression of polypyrimidine tract-binding protein-associated splicing factor (PSF) on low concentration of 4-hydroxynonenal (4-HNE) induced human retinal microvascular endothelial cells (HRMECs), and explore the possible mechanism.Methods:The HRMECs cultured in vitro were divided into 4-HNE treated group, PSF overexpression group combined with 4-HNE group (PSF+4-HNE group), PSF overexpression+ML385 treatment combined with 4-HNE group (PSF+ML385+4-HNE group), and 4-HNE induced PSF overexpression group with LY294002 pretreatment (LY294002+4-HNE+PSF group). Cell culture medium containing 10 μmmol/L 4-HNE was added into 4-HNE treatment group, PSF+4-HNE group, PSF+ML385+4-HNE group for 12 hours to stimulate oxidative stress. 1.0 μg of pcDNA-PSF eukaryotic expression plasmid were transfected into PSF+4-HNE group and PSF+ML385+4-HNE group to achieve the overexpression of PSF. Also cells were pretreated with ML385 (5 μmol/L) for 48 hours in the PSF+ML385+4-HNE group, meanwhile within the LY294002+4-HNE+PSF group, after pretreatment with LY294002, cells were treated with plasmid transfection and 4-HNE induction. Transwell detects the migration ability of PSF to HRMECs. The effect of PSF on the lumen formation of HRMECs was detected by using Matrigel in vitro three-dimensional molding method. Flow cytometer was used to detect the effect of PSF overexpression on reactive oxygen (ROS) level in HRMECs. Protein immunoblotting was used to detect the relative expression of PSF, nuclear factor E2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1) protein, and phosphoserine threonine protein kinase (pAkt) protein. The comparison between the two groups was performed using a t-test. Results:The number of live cells, migrating cells, and intact lumen formation in the 4-HNE treatment group and the PSF+4-HNE group were 1.70±0.06, 0.80±0.13, 24.00±0.58, 10.00±0.67, and 725.00±5.77, 318.7±12.13, respectively. There were significant differences in the number of live cells, migrating cells, and intact lumen formation between the two groups ( t=12.311, 15.643, 17.346; P<0.001). The results of flow cytometry showed that the ROS levels in the 4-HNE treatment group, PSF+4-HNE group, and PSF+ML385+4-HNE group were 816.70±16.67, 416.70±15.44, and 783.30±17.41, respectively. There were statistically significant differences between the two groups ( t=16.311, 14.833, 18.442; P<0.001). Western blot analysis showed that the relative expression levels of pAkt, Nrf2, and HO-1 proteins in HRMECs in the 4-HNE treatment group, PSF+4-HNE group and LY294002+4-HNE+PSF group were 0.08±0.01, 0.57±0.04, 0.35±0.09, 0.17±0.03, 1.10±0.06, 0.08±0.11 and 0.80±0.14, 2.50±0.07, 0.50±0.05, respectively. Compared with the PSF+4-HNE group, the relative expression of pAkt, Nrf2, and HO-1 proteins in the LY294002+4-HNE+PSF group decreased significantly, with significant differences ( t=17.342, 16.813, 18.794; P<0.001). Conclusion:PSF upregulates the expression of HO-1 by activating the phosphatidylinositol 3 kinase/Akt pathway and inhibits cell proliferation, migration, and lumen formation induced by low concentrations of 4-HNE.

11.
Chinese Journal of Radiological Medicine and Protection ; (12): 428-432, 2022.
Article in Chinese | WPRIM | ID: wpr-956801

ABSTRACT

Objective:To investigate the expression changes of lncRNAs and mRNAs in human umbilical vein endothelial cells(HUVEC) treated by tritiated water.Methods:HUVEC cells were divided into two groups, the control group cultured in DMEM medium, and the tritiated water exposure group cultured in a medium containing tritiated water with a final concentraion of 3.7×10 3 Bq/ml. After culture for 48 h, cells were collected for RNA extract.The differentially expressed lncRNAs and mRNAs were screened by high-through put chip technology and then analyzed. Results:Compared with the control group, 1 717 lncRNAs were significantly up-regulated and 3 994 lncRNAs significantly down-regulated, and 4 562 mRNAs were significantly up-regulated and 1 433 mRNAs down-regulated. Through co-expression analysis of differential mRNAs and lncRNAs, some key genes including SQSTM1, CXCL8, ITPR1, GADD45A, NF-kB1 and VDAC1 were obtained.Conclusions:Tritiated water exposure can induce multiple changes of mRNAs and lncRNAs in vascular endothelial cells, which may lead to toxic effects through signaling pathways including some key genes such as SQSTM1, CXCL8, and ITPR1.

12.
Cancer Research on Prevention and Treatment ; (12): 299-303, 2022.
Article in Chinese | WPRIM | ID: wpr-986513

ABSTRACT

Objective To investigate the effect of RhoC expression in vascular endothelial cells on the proliferation and invasion of myeloma RPMI8226 cells and its possible mechanism. Methods RhoC shRNA lentivirus vector was constructed and transfected into myeloma vascular endothelial cells (MVECs) and human umbilical vein endothelial cells (HUVECs). The effects of conditioned medium on the proliferation, cell cycle and invasion of RPMI8226 cells were detected by CCK-8 test, flow cytometry and Transwell test. The expression of CDK, CyclinD1, AKT, PI3K, MMP2 and MMP9 were detected by Western blot. Results The expression of RhoC in MVECs and HUVECs were downregulated. The proliferation and invasion of RPMI8226 cells in RhoC shRNA group were lower than those in negative control group, and the cell cycle was blocked in G0/G1 phase (P < 0.05). The expressions of CDK, CyclinD1, AKT, PI3K, MMP2 and MMP9 in RhoC shRNA group were lower than those in negative control group (P < 0.05). Conclusion The expression of RhoC in MVECs can regulate the proliferation and invasion of myeloma RPMI8226 cells, and the mechanism may be related to the participation of CDK, CyclinD1, AKT, PI3K, MMP2 and MMP9.

13.
China Journal of Chinese Materia Medica ; (24): 1625-1631, 2022.
Article in Chinese | WPRIM | ID: wpr-928102

ABSTRACT

This study aimed to observe the intervention effect of Jianpi Huogu Formula(JPHGF) on the functional damage of vascular endothelial cells caused by glucocorticoid, and explore its action mechanism from the PI3 K/Akt and mitogen activated protein kinase(MAPK) signaling pathways. The extracted thoracic aorta ring of normal SD rats were intervened first with vascularendothelial growth factor(VEGF, 20 μg·L-1) and/or sodium succinate(MPS, 0. 04 g·L-1) in vitro and then with JPHGF(8, 16, and 32 μg·L-1) for five mcontinuous ethylpdays, rednisolofollowed nebythe statistics of the number, length, and area of microvessels budding fromvascular rings. In addition, the human umbilical vein endothelial cells(HUVECs) induced by VEGF(20 μg·L-1) were added with MPS(0. 04 g·L-1) and then with JPHGF(8, 16, and 32 μg·L-1) for observing the migration, invasion, and luminal formation abilities of HUVECs in the migration, invasion and luminal formation experiments. The protein expression levels of PI3 K, p-Akt, p-JN K, and p-ERK in HUVECs were assayed by Western blot. The results showed that JPHGF dose-dependently improved the num-ber,length, and area of microvessels in MPS-induced rat thoracic aortic ring, reversed the migration, invasion and lumen formation abiliti es of HUVECs reduced by MPS, and up-regulated the protein expression levels of PI3 K, p-Akt, and p-JNK in HUVECs. All thesehave suggested that JPHGF exerts the protective effect against hormone-induced damage to the angiogenesis of vascular endothelial cells by activating the PI3 K/Akt and MAPK signaling pathways, which has provided reference for exploring the mechanism of JPHGF in treating s teroid-induced avascular necrosis of femoral head(SANFH) and also the experimental evidence for enriching the scientific connotationof spleen-invigorating and blood-activating therapy.


Subject(s)
Animals , Humans , Rats , Glucocorticoids/pharmacology , Human Umbilical Vein Endothelial Cells , Neovascularization, Pathologic/metabolism , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism
14.
China Journal of Chinese Materia Medica ; (24): 492-498, 2022.
Article in Chinese | WPRIM | ID: wpr-927994

ABSTRACT

This study explores the regulatory effect of astragaloside Ⅳ on miR-17-5 p and its downstream proprotein convertase subtillisin/kexin type 9(PCSK9)/very low density lipoprotein receptor(VLDLR) signal pathway, aiming at elucidating the mechanism of astragaloside Ⅳ against atherosclerosis(AS). In cell experiment, oxidized low-density lipoprotein(ox-LDL) was used for endothelial cell injury modeling with vascular smooth muscle cells(VSMCs). Then cells were classified into the model group, miR-17-5 p inhibitor group, blank serum group, and astragaloside Ⅳ-containing serum group based on the invention. Afterward, cell viability and the expression of miR-17-5 p, VLDLR, and PCSK9 mRNA and protein in cells in each group were detected. In animal experiment, 15 C57 BL/6 mice were used as the control group, and 45 ApoE~(-/-) mice were classified into the model group, miR-17-5 p inhibitor group, and astragaloside Ⅳ group, with 15 mice in each group. After 8 weeks of intervention, the peripheral serum levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α), and the expression of miR-17-5 p, VLDLR, and PCSK9 mRNA in the aorta of mice were detected. The pathological changes of mice in each group were observed. According to the cell experiment, VSMC viability in the miR-17-5 p inhibitor group and the astragaloside Ⅳ-containing serum group was higher than that in the model group(P<0.05). The mRNA and protein expression of miR-17-5 p and VLDLR in VSMCs in the miR-17-5 p inhibitor group and the astragaloside Ⅳ-containing serum group was lower than that in the model group(P<0.05), but the mRNA and protein expression of PCSK9 was higher than that in the model group(P<0.05). As for the animal experiment, the levels of IL-6 and TNF-α in the peripheral serum of the miR-17-5 p inhibitor group and the astragaloside Ⅳ group were lower(P<0.05) and the serum level of IL-10 was higher(P<0.05) than that of the model group. The mRNA expression of miR-17-5 p and VLDLR in the aorta in the miR-17-5 p inhibitor group and the astragaloside Ⅳ group was lower(P<0.05), and PCSK9 mRNA expression was higher(P<0.05) than that in the model group. Pathological observation showed mild AS in the miR-17-5 p inhibitor group and the astragaloside Ⅳ group. In summary, astragaloside Ⅳ can prevent the occurrence and development of AS. The mechanism is that it performs targeted regulation of miR-17-5 p, further affecting the PCSK9/VLDLR signal pathway, inhibiting vascular inflammation, and thus alleviating endothelial cell injury.


Subject(s)
Animals , Mice , Atherosclerosis/genetics , Lipoproteins, LDL/metabolism , MicroRNAs/metabolism , Proprotein Convertase 9/metabolism , Receptors, LDL/metabolism , Saponins , Signal Transduction , Triterpenes
15.
International Eye Science ; (12): 378-382, 2022.
Article in Chinese | WPRIM | ID: wpr-920403

ABSTRACT

@#AIM: To explore the effect of dapagliflozin on the apoptosis and oxidative stress of high glucose-induced human retinal vascular endothelial cells and its regulatory effect on forkhead FOXO4. <p>METHODS: High glucose-induced human retinal vascular endothelial cells(HRVECs)were used to establish a cell injury model(high glucose group). Experimental groups include high glucose+dapagliflozin low-dose group(1ng/L dapagliflozin), high glucose+dapagliflozin medium-dose group(5ng/L dapagliflozin), high glucose+dapagliflozin high-dose group(10ng/L dapagliflozin), high glucose+dapagliflozin high-dose+pcDNA group, high glucose+dapagliflozin high-dose+pcDNA-FOXO4 group, and normal sugar group(5.5mmol/L D-glucose). Flow cytometry was used to detect the apoptosis rate. The levels of superoxide dismutase(SOD)and malondialdehyde(MDA)were tested with corresponding kits. Western blot assay was used to detect the protein level of FOXO4. <p>RESULTS: Compared with the normal sugar group, the apoptosis rate(<i>P</i><0.05), the level of MDA(<i>P</i><0.05)and FOXO4(<i>P</i><0.05)were increased, but the level of SOD was decreased(<i>P</i><0.05)in high-glucose group. Compared with the high glucose group, cell apoptosis rate(<i>P</i><0.05), the level of MDA(<i>P</i><0.05)and the protein level of FOXO4 were decreased(<i>P</i><0.05), but the level of SOD was increased(<i>P</i><0.05)in high glucose+medium-dose dapagliflozin group and high glucose+high-dose dapagliflozin group. Compared with high glucose+dapagliflozin high-dose+pcDNA group, the apoptosis rate(<i>P</i><0.05)and the level of MDA(<i>P</i><0.05)were increased, but the level of SOD was decreased(<i>P</i><0.05)in high glucose+dapagliflozin high-dose+pcDNA-FOXO4 group(<i>P</i><0.05). <p>CONCLUSION: Dapagliflozin could inhibit oxidative stress and cell apoptosis in high glucose-induced HRVECs by down-regulating FOXO4, thereby reducing cell damage.

16.
Acta Pharmaceutica Sinica B ; (6): 2265-2285, 2021.
Article in English | WPRIM | ID: wpr-888862

ABSTRACT

The administration of nanoparticles (NPs) first faces the challenges of evading renal filtration and clearance of reticuloendothelial system (RES). After that, NPs infiltrate through the expanded endothelial space and penetrated the dense stroma of tumor microenvironment to tumor cells. As long as possible to prolong the time of NPs remaining in tumor tissue, NPs release active agent and induce pharmacological action. This review provides a comprehensive summary of the physical and chemical properties of NPs and the influence of various biological factors in tumor microenvironment, and discusses how to improve the final efficacy through adjusting the characteristics and structure of NPs. Perspectives and future directions are also provided.

17.
Journal of Medical Biomechanics ; (6): E760-E767, 2020.
Article in Chinese | WPRIM | ID: wpr-862340

ABSTRACT

The angiogenic capacity of vascular endothelial cells is influenced by multiple mechanical factors. Mechanical factors guide the rearrangement of cytoskeleton, mediate intracellular signal transduction, affect cell migration, orientation and other behaviors, and then regulate their angiogenic capacity. However, different types of mechanical stimulation have different effects on their angiogenic capacity. This article summarizes and discusses the research work and progress of the influence of five mechanical factors (shear force, stretch stress, low-intensity pulsed ultrasound, microgravity, material properties) on vascular endothelial cell angiogenesis, which provides a basis and ideas for in-depth research of vascular biomechanics.

18.
Chinese Journal of Tissue Engineering Research ; (53): 2121-2126, 2020.
Article in Chinese | WPRIM | ID: wpr-847689

ABSTRACT

BACKGROUND: Radiation-induced tissue injury is one of the more serious side effects of cancer patients after radiotherapy. Recent studies have shown that in the radiation-induced tissue injury model, extracellular vesicles as intercellular information carriers have two sides. On the one hand, they participate in the radiation-induced tissue injury process to mediate tissue damage. On the other hand, they participate in radiation-induced tissue injury repair by transferring biologically active substances. OBJECTIVE: To summarize the damage and repair effects of extracellular vesicles from different sources on radioactive tissue damage and to clarify the relationship between extracellular vesicles and radiation-induced tissue injury, which will be beneficial to explore new treatment strategies for radiationinduced tissue injury. METHODS: Databases of PubMed and CNKI were retrieved with the keywords of “extracellular vesicles, radiation-induced tissue damage (bone, brain, intestine, etc.), WNT signal” in Chinese and “radiation-induced tissue injury, extracellular vesicles, tissue repair and regeneration, vascular endothelial cells, bystander effects” in English. The retrieval time was from 1989 to 2020. After initial screening of titles and abstracts, irrelevant articles were excluded, and 61 eligible articles were included for result analysis. RESULTS AND CONCLUSION: Extracellular vesicles are membrane-closed vesicles that are naturally released from cells under normal physiological or abnormal pathological conditions. On the one hand, under pathological conditions, radioactive tissue damage cannot be separated from the mediation of extracellular vesicles; on the other hand, extracellular vesicles carrying information molecules can promote the repair of radioactive tissue damage. Therefore, in the field of radioactive tissue damage repair and regeneration, extracellular vesicles have the potential to become a new cell-free therapy, but whether it can be applied to clinical use requires more in-depth research and exploration.

19.
International Eye Science ; (12): 16-20, 2020.
Article in Chinese | WPRIM | ID: wpr-777787

ABSTRACT

@#AIM: To investigate the role of bone marrow mesenchymal stem cells(BMSCs)under hypoxia on vascular endothelial cell migration and lumen formation.<p>METHODS: Three kinds of conditioned media(CM)were prepared which including control group(vascular endothelial cells conditioned medium, VCM), normoxic BMSCs-CM group(NCM), and hypoxic BMSCs-CM group(HCM). Then the migration and lumen formation of human umbilical vein endothelial cells(HUVECs)and monkey choroid-retinal vascular endothelial cells(RF/6A)were detected after cultured with the above three kinds of CM respectively for 6-24h.<p>RESULTS: The numbers of cells migration and the tubes formation(including the total length of the tubes and the numbers of branches)in the hypoxic group(HCM)were increased significantly compared with the control group and the normoxic group(<i>P</i><0.05). The numbers of migrated RF/6A cells were 19.00±3.61, 32.33±3.06, and 114.00±11.53, respectively in control group(VCM), normoxic group(NCM)and hypoxic group(HCM)after treated for 24h(<i>F</i>=153.3, <i>P</i><0.001). And the numbers of migrated HUVECs were 76.00±9.54, 122.00±18.68, and 307.70±25.97, respectively in three groups(<i>F</i>=121.5, <i>P</i><0.001). After incubation of RF/6A cells with three different CM for 6h, the numbers of tubes formation were 12.00±3.00, 37.00±4.58, and 51.00±3.61, respectively(<i>F</i>=81.7, <i>P</i><0.0001). The results of lumen formation of HUVECs in three groups were similar with that of RF/6A.<p>CONCLUSION: BMSCs can promote the migration and lumen formation of vascular endothelial cells under hypoxia. This mechanism may play a role in retinal neovascularization.

20.
International Eye Science ; (12): 999-1002, 2020.
Article in Chinese | WPRIM | ID: wpr-876799

ABSTRACT

@#miRNA-15a(miR-15a)is a non-coding small molecule RNA located on 13q14 gene. It affects the growth, development, differentiation and apoptosis of all organs and cells of the whole body. As the study progressively deepened, it was found that the role of miR-15a in different tissues and cells was not entirely consistent. Sometimes it plays a role in suppressing cancer, and sometimes it promotes cancer. The signal pathways it affects are complex and diverse. With the deepening of biological research into cell signaling pathways, miRNA-15a has become a miRNA more extensively studied. But in the ophthalmology, the corresponding research is not much. In this article, we mainly focus on the mechanism of miR-15a and its current research situation in ophthalmic diseases, so as to provide a reference for further study and their treatment.

SELECTION OF CITATIONS
SEARCH DETAIL